H(t)=-16t^2+80t+50

Simple and best practice solution for H(t)=-16t^2+80t+50 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-16t^2+80t+50 equation:



(H)=-16H^2+80H+50
We move all terms to the left:
(H)-(-16H^2+80H+50)=0
We get rid of parentheses
16H^2-80H+H-50=0
We add all the numbers together, and all the variables
16H^2-79H-50=0
a = 16; b = -79; c = -50;
Δ = b2-4ac
Δ = -792-4·16·(-50)
Δ = 9441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{9441}=\sqrt{9*1049}=\sqrt{9}*\sqrt{1049}=3\sqrt{1049}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-79)-3\sqrt{1049}}{2*16}=\frac{79-3\sqrt{1049}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-79)+3\sqrt{1049}}{2*16}=\frac{79+3\sqrt{1049}}{32} $

See similar equations:

| (x+1)(x+3)(x+5)(x+7)+16=0 | | 1x+1,5*Y=20 | | 1x+1,5*x=20 | | 3(2x)-5=2(3x-1)+x | | 16^2+10x=0 | | 5x-7=12-3x | | 12x2+200x+5000=0 | | (x-8)^2+(x+8)^2=85^2 | | 8+5x=6x+4 | | (t/3)-3=14 | | (a/5)+7=11 | | x^2+x=1.166 | | 4x+2=(−8)+6x= | | 2x2⋅480x⋅240=6x−11 | | H=16t^2-28t+130 | | 10^{3x-1}=7^x | | 3(2×-4)=-4x+28 | | 6x–6=66 | | 2x+4x+12=66 | | x^2-40x=20000 | | 4x2+12x+10=0 | | 3x^2+76x-1320=0 | | 5x+13=37−3x | | x+11=-2x+29 | | 3x-15=x3+ | | 2x.x=72 | | 2c-4=9c | | -x+22=2x+1 | | x+8=4x+23 | | x+2=3x+14 | | x+2=3x+13 | | x+5=-x+13 |

Equations solver categories